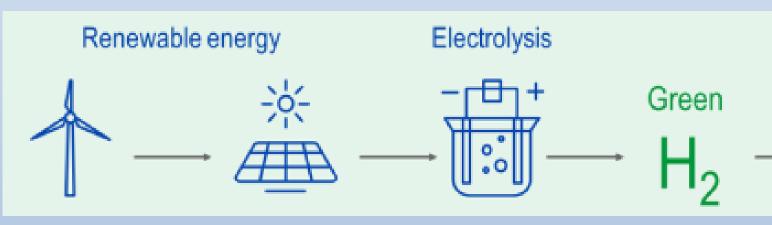
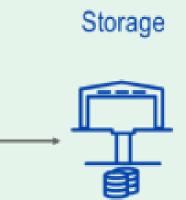
ALL INDIA SEMINAR ON "GREEN HYDROGEN GENERATION, STORAGE, AND SAFETY ASPECTS"

The Institution of Engineers (India)


Challenges and Innovations in Green Hydrogen A Pathway to Sustainable Energy Transition

Jayant Sinha Senior Principal Consultant (Energy Transition & Utilities) **EnTruist Power**


Green Hydrogen: Energy Resource of the Future

- Green or low-carbon hydrogen is a potential energy resource integral to drive energy transition to achieve global net-zero ambitions.
- An integrated approach to drive sustainable development goals opens new pathways in green hydrogen applications in industries, utilities and transport sector.
- Innovations in green hydrogen can help us provide a green fuel alternative, and build long-term energy security.

Hydrogen is one of the most promising energy vectors to assist the low-carbon energy transition.

Why is Green Hydrogen important for our economy?

- **Power Generation**: Green hydrogen can be used as a fuel for low-carbon power generation by blending with natural gas in gas turbines.
- Industry feedstock: Green H₂ can be used as an industrial feedstock in the production of green ammonia and nitrogenous fertilizers.
- **Transportation**: In transportation, green hydrogen can be used as zeroemission fuel for fuel-cell electric vehicle (FCEV).
- Heating: It can be used as a clean energy substitute for fossil fuels in heating applications.

Challenges: High cost of infrastructure for production, storage and transportation of green hydrogen.

Actions needed: Policy and regulatory support for green hydrogen infrastructure, promoting green H2 technologies, e.g. fuel cells, electrolyzers, safe storage and transportation

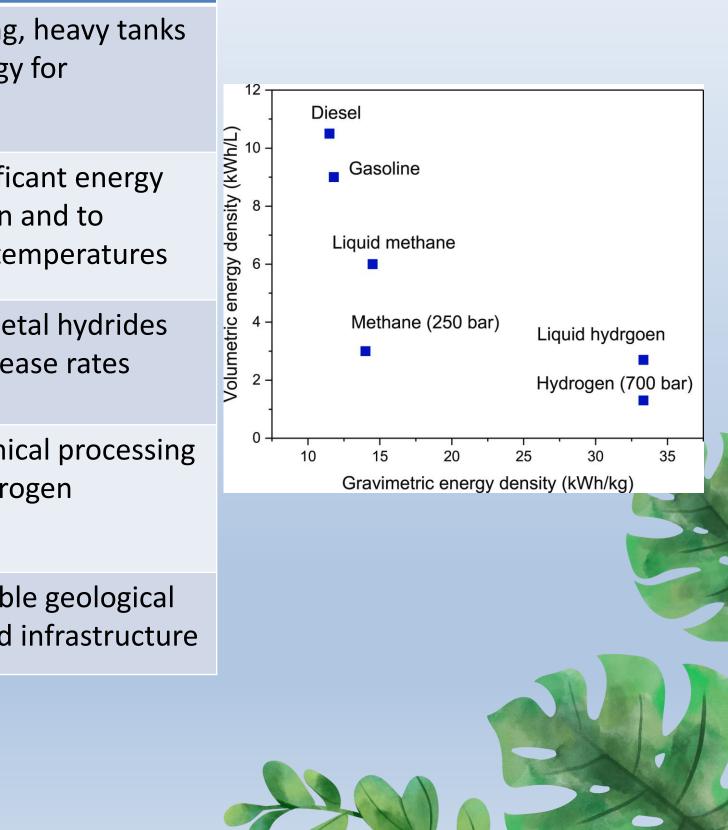
Green Hydrogen production technologies

Green H ₂ Production	Pros	C
Proton Exchange Membrane (PEM)	High efficiency, clean production	H m
Alkaline Water Electrolysis	Lower cost, well-established technology	Lo P
Solid Oxide Electrolysis Cells (SOEC)	High efficiency	H m
Photo electro-chemical (PEC) water splitting	Utilizes solar energy	Po ra
Biological and Microbial Electrolysis	Sustainable, can use organic waste	Lo p

Green hydrogen is an important vector to promote decarbonization and tackle climate change.

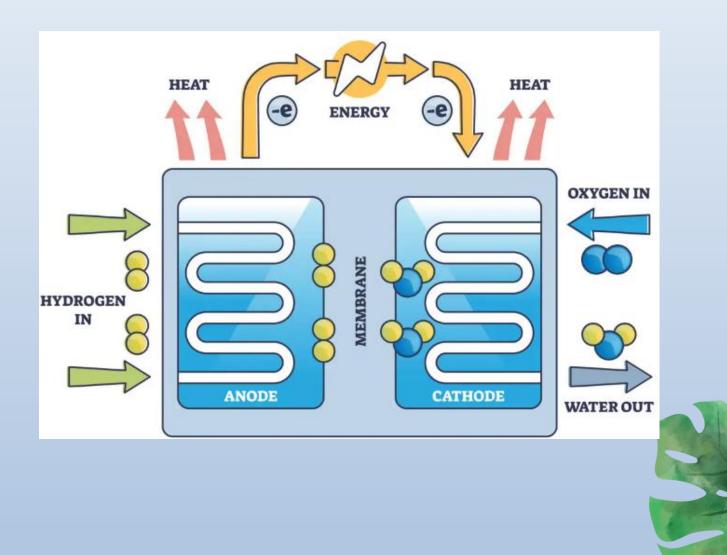
Cons

- High initial and production costs, nembrane durability issues
- Lower efficiency compared to PEM
- High operating temperatures, naterial challenges
- Poor efficiency, sluggish reaction rates
- ower production rates, complex processes



Green H₂ storage and transportation

	Green H ₂ Storage & Transportation	Pros	Cons
	Compressed Gas Storage, in high- pressure tanks at pressures up to 700 bar	Simple and widely used method	Requires strong and high energy compression
	Liquid H₂ Storage, cooled to cryogenic temperatures and stored in insulated tanks	Higher energy density compared to compressed gas	Requires signifi- for liquefaction maintain low te
	Metal Hydrides, absorbed into metal alloys, forming metal hydrides	Safe and compact storage method	High cost of me and slower rele
	Chemical Storage, as in chemical compounds such as ammonia and hydrocarbons	High storage density and ease of transportation	Requires chemi to release hydro
	Underground Storage, in caverns or depleted oil and gas fields	Large-scale storage capacity	Requires suitab formations and



Innovative use cases of Green Hydrogen...1

1. Hydrogen Fuel Cells:

- HFCs can fill the gaps in electricity demand during intermittent generation from renewable energy systems.
- HFCs can be used in sustainable transport operations by sea, land, or air, minimizing carbon footprint and promoting a green economy.
- 2. Renewable Hydrogen: Production of green hydrogen from renewable energy sources eliminates carbon emissions.
- 3. Hydrogen intermediates: Hydrogen intermediates e.g. e-methanol can be used in internal combustion engines by blending with motor fuels, to reduce emissions

Innovative use cases of Green Hydrogen...2

1. Combined Heat & Power (CHP):

- Green hydrogen blended with natural gas acts as low carbon fuel for gas turbines in power generation.
- Termed cogeneration, the exhaust heat from gas turbines is then fed to the boiler to produce steam, for electricity generation and heating.

2. Hydrogen Propulsion:

- Green hydrogen is used as a clean propulsion fuel (liquid oxygen-hydrogen systems) in transport, aviation and space application.
- Blending it with other fuels provide a low-carbon alternative to fossil fuels.

Role of Technology in Green H₂ transition Artificial Intelligence and Machine Learning (AI/ML)

- 1. Optimizing Operations: Analyze real-time data from sensors and adjusting parameters such as temperature, pressure, and current to improve efficiency, performance and green hydrogen production
- 2. Predictive Maintenance: Monitor asset health and detect potential issues in electrolyzers, compressors, pumps, and other components of green hydrogen production, storage and distribution
- 3. Optimizing RE sources: Optimize resources of green hydrogen production using data forecast of weather, grid demand, available capacity and energy prices
- 4. Supply Chain Optimization: Optimize logistics, transportation, storage and supply of green hydrogen,
 - apart from managing resources in supply chain

Role of Technology in Green H₂ transition Industrial Internet of Things (IIoT)

- 1. Real-Time Monitoring and Control: IIoT devices, such as sensors and telemetry, provide real-time data on energy consumption, plant performance, hydrogen production and storage
- 2. Enhanced Efficiency: IIoT systems facilitate the integration of RE sources to power electrolyzers for green hydrogen production, with real-time data of availability, production and storage
- 3. Data-Driven Decisions: IIoT enables datadriven decisions by providing accurate forecasts of variable RE generation and energy demand, thus optimizing resources and cost of
- production

Role of Technology in Green H₂ transition Blockchain technology

- Certificates of Origin: Certification process by providing a secure and immutable digital ledger to store transactions and ensure traceability of green hydrogen to clean energy sources.
- 2. Smart Contracts: Automated execution of smart contracts among parties for transacting in green hydrogen, without a central authority or intermediaries.
- 3. Transparency and Security: Transparent and secure way to track emissions along the value chain from production to consumption, ensuring that investments in green hydrogen are appropriately credited.

Role of Technology in Green H₂ transition Digital Twin & Advanced Analytics

Digital twin (DT): DT can be used for modeling & simulation of variables in green H₂ production e.g. weather, demand, cost, etc. to maximize returns and minimize risks

- a) Modelling: Calibrate optimal configuration of RE systems and electrolyzer capacity, based on hydrogen production demand and storage capacity
- **b) Simulation**: monitors the operations of electrolyzer and associated equipment to predict potential failures, reduce downtime and maximize production efficiency.

Advanced analytics: Analytics can transform data into business intelligence with actionable insights, during green H₂ production

- a) Data analytics: Timely action to maximize yields during green hydrogen production
- b) Business intelligence: Root cause analysis of operational failures to increase electrolyzer uptime, reduce losses and improve revenues

ACKNOWLEDGEMENT

- Analyzing the green hydrogen value chain against the sustainable development goals; <u>https://link.springer.com/article/10.1007/s43621-024-00374-4</u>
- 2. Green hydrogen value chains in the industrial sector—Geopolitical and market implications; https://www.sciencedirect.com/science/article/abs/pii/S2214629622003504
- Powering the green hydrogen value chain;
 <u>https://global.abb/group/en/stories/energy-transition/power/green-hydrogen-value-chain</u>
- 4. The Green Tech Opportunity in Hydrogen; https://www.bcg.com/publications/2021/capturing-value-in-the-low-carbon-hydrogen-market
- 5. The Future of Green Hydrogen Value Chains; <u>https://www.belfercenter.org/sites/default/files/pantheon_files/files/publication/Paper_MappingHydrogen_Final.pdf</u>

ENTRUIST POWER

EnTruist Power is a consortium of Energy Transition and Digital Transformation professionals who offer technical solutions consultancy, advisory, industry research and capacity building programs, focused on environment leadership and sustainability goals. (<u>https://entruistpower.com/#whatwedo</u>)

Thank you!

Jayant Sinha

Senior Principal Consultant (E&U) E: jayant.sinha@entruistpower.com URL: https://entruistpower.com/

